Jasmonic Acid Enhances Al-Induced Root Growth Inhibition.

نویسندگان

  • Zhong-Bao Yang
  • Chunmei He
  • Yanqi Ma
  • Marco Herde
  • Zhaojun Ding
چکیده

Phytohormones such as ethylene and auxin are involved in the regulation of the aluminum (Al)-induced root growth inhibition. Although jasmonate (JA) has been reported to play a crucial role in the regulation of root growth and development in response to environmental stresses through interplay with ethylene and auxin, its role in the regulation of root growth response to Al stress is not yet known. In an attempt to elucidate the role of JA, we found that exogenous application of JA enhanced the Al-induced root growth inhibition. Furthermore, phenotype analysis with mutants defective in either JA biosynthesis or signaling suggests that JA is involved in the regulation of Al-induced root growth inhibition. The expression of the JA receptor CORONATINE INSENSITIVE1 (COI1) and the key JA signaling regulator MYC2 was up-regulated in response to Al stress in the root tips. This process together with COI1-mediated Al-induced root growth inhibition under Al stress was controlled by ethylene but not auxin. Transcriptomic analysis revealed that many responsive genes under Al stress were regulated by JA signaling. The differential responsive of microtubule organization-related genes between the wild-type and coi1-2 mutant is consistent with the changed depolymerization of cortical microtubules in coi1 under Al stress. In addition, ALMT-mediated malate exudation and thus Al exclusion from roots in response to Al stress was also regulated by COI1-mediated JA signaling. Together, this study suggests that root growth inhibition is regulated by COI1-mediated JA signaling independent from auxin signaling and provides novel insights into the phytohormone-mediated root growth inhibition in response to Al stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jasmonic Acid Enhances Al-Induced Root Growth Inhibition1[OPEN]

Phytohormones such as ethylene and auxin are involved in the regulation of the aluminum (Al)-induced root growth inhibition. Although jasmonate (JA) has been reported to play a crucial role in the regulation of root growth and development in response to environmental stresses through interplay with ethylene and auxin, its role in the regulation of root growth response to Al stress is not yet kn...

متن کامل

Stress Messengers Jasmonic Acid and Abscisic Acid Negatively Regulate Plant Cell Cycle

Environmental stress affects plant growth and development. Several plant hormones, such as salicylic acid, abscisic acid, jasmonic acid and ethylene play a crucial role in altering plant morphology in response to stress. Developmental regulation often has the cell cycle machinery among its targets. We analyzed the effect of jasmonic acid (JA) and abscisic acid (ABA) on cell cycle progression in...

متن کامل

Synergistic action of auxin and cytokinin mediates aluminum-induced root growth inhibition in Arabidopsis.

Auxin acts synergistically with cytokinin to control the shoot stem-cell niche, while both hormones act antagonistically to maintain the root meristem. In aluminum (Al) stress-induced root growth inhibition, auxin plays an important role. However, the role of cytokinin in this process is not well understood. In this study, we show that cytokinin enhances root growth inhibition under stress by m...

متن کامل

Natural variation in small molecule-induced TIR-NB-LRR signaling induces root growth arrest via EDS1- and PAD4-complexed R protein VICTR in Arabidopsis.

In a chemical genetics screen we identified the small-molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) that triggers rapid inhibition of early abscisic acid signal transduction via PHYTOALEXIN DEFICIENT4 (PAD4)- and ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1)-dependent immune signaling mechanisms. However, mechanisms upstream of EDS1 and PAD4 in DFPM-mediated signalin...

متن کامل

Ginsenoside Production by Hairy Root Cultures of Panax ginseng C.A. Meyer in Bioreactors

Hairy roots infected with Agrobacterium rhizogenes were induced from roots, stems, and leaves of Korean ginseng (Panax ginseng C.A. Meyer) on half strength MS medium supplemented with 300 mg·L Cefotaxim sodium. DNA extraction was carried out and PCR results confirmed that the hairy roots induced by A. rhizogenes KCTC 2703 have the rol C gene in their T-DNA. Selected root lines were propagated i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 173 2  شماره 

صفحات  -

تاریخ انتشار 2017